Generalized additive and generalized additive threshold models were used to study the relationship between landings per unit effort (LPUE) of anchovy, Engraulis encrasicolus, during the spawning season (May-October) from 2000-2010, and environmental variables, using sea surface data derived from satellite imagery (temperature, salinity, chlorophyll a, and meridional and zonal velocity current) in three fishing zones defined along the Catalan coast. The configuration of the environment where spawning aggregations occur affects early life stages and therefore the future demographic structure of the population. It is therefore fundamental to define the environmental conditions and their variations during the spawning season. Our results show that the low salinity in the Northern and Central sector and the velocity of the zonal and meridional currents in the Central and Southern sector, respectively, implicated in retention processes, increase LPUE during the spawning period. Temperature was related to LPUE in the Southern and in the Northern sectors, in both of which a non-linear positive effect with a local maximum peak at lower temperature values was present. However, in the Northern sector, this relationship held only for the period before 2007. After 2007 the decrease in preferred temperature suggests a reduction of the thermal window in which adult spawner aggregations occur. In agreement with previous studies on this species, the relationships were non-linear, stressing the importance of the match in timing and location between favourable conditions and spawning period as a crucial event for understanding the dynamics of small pelagics populations. |