Effect of vertical mixing on short-term mycosporine-like amino acid synthesis in the Antarctic diatom, Thalassiosira sp.

Marcelo Pablo Hernando, Jose Ignacio Carreto, Mario Carignan and Gustavo Adolfo Ferreyra

One of the adaptations whereby phytoplankton can alleviate damage induced by ultraviolet radiation (280-400 nm) is the synthesis of mycosporine-like amino acids (MAAs). The synthesis of MAAs was studied after exposure of the Antarctic diatom Thalassiosira sp. isolated from Potter Cove (South Shetland Is., Antarctica) to 2 treatments with a solar simulator: surface (Sfix) and vertical mixing (Mix) irradiance conditions. Light exposure was simulated in daily cycles with maximum irradiance at noon. Only 2 MAAs, Porphyra-334 (82-85%) and Shinorine (15-18%), were identified. The concentration of the two compounds increased during experimental light exposure (50-55%) and declined in the dark (10-15%). During the light period the synthesis rate of MAAs per unit of chlorophyll a was higher in the Sfix treatment (µ=0.17 h-1) than in the Mix treatment (µ=0.05 h-1). In spite of the higher MAA levels, low cell numbers were observed in the Sfix treatment, suggesting that the algae synthesized photoprotective compounds at the expense of growth. Our results document overlapping effects of both daily light cycles and vertical mixing affecting the synthesis of MAAs. This, and the high thermal dissipation of the ultraviolet B radiation energy (280-320 nm) absorbed by these substances, suggest a rapid photoadaptive response of Thalasiossira sp. upon exposure to elevated irradiance in a stratified water column, as well as the complementary role of vertical mixing in photo-protection.

Keywords: mycosporine-like amino acids, vertical mixing, Antarctic diatom, photoadaptive response, UV
Contents of this volume Sci. Mar. 76(1) : 49-57 Back PDF
Please, send comments to
ICM (CSIC) - Passeig Marítim de la Barceloneta, 37-49. E-08003 Barcelona (Spain)