
FUNDAMENTAL LAWS AND EQUATIONS

Kinematics

What is a fluid? Specification of motion

A fluid is anything that flows, usually a liquid or
a gas, the latter being distinguished by its great rel-
ative compressibility.

Fluids are treated as continuous media, and their
motion and state can be specified in terms of the
velocity u, pressure p, density ρ, etc evaluated at
every point in space x and time t. To define the den-
sity at a point, for example, suppose the point to be
surrounded by a very small element (small com-
pared with length scales of interest in experiments)
which nevertheless contains a very large number of
molecules. The density is then the total mass of all

the molecules in the element divided by the volume
of the element.

Considering the velocity, pressure, etc as func-
tions of time and position in space is consistent with
measurement techniques using fixed instruments in
moving fluids. It is called the Eulerian specification.
However, Newton’s laws of motion (see below) are
expressed in terms of individual particles, or fluid
elements, which move about. Specifying a fluid
motion in terms of the position X(t) of an individual
particle (identified by its initial position, say) is
called the Lagrangian specification. The two are
linked by the fact that the velocity of such an ele-
ment is equal to the velocity of the fluid evaluated at
the position occupied by the element:

. (1)

The path followed by a fluid element is called a
particle path, while a curve which, at any instant, is
everywhere parallel to the local fluid velocity vector

dX
dt

= u X(t), t[ ]
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is called a streamline. Particle paths are coincident
with streamlines in steady flows, for which the
velocity u at any fixed point x does not vary with
time t.

Material derivative; acceleration.

Newton’s Laws refer to the acceleration of a par-
ticle. A fluid element may have acceleration both
because the velocity at its location in space is chang-
ing (local acceleration) and because it is moving to
a location where the velocity is different (convective
acceleration). The latter exists even in a steady flow.

How to evaluate the rate of change of a quantity
at a moving fluid element, in the Eulerian specifica-
tion? Consider a scalar such as density ρ (x ,t). Let
the particle be at position x at time t, and move to x
+ δx at time t + δt, where (in the limit of small δt)

. (2)

Then the rate of change of ρ following the fluid,
or material derivative, is 

(by the chain rule for partial differentiation)

(3a)

(using (2))

(3b)

in vector notation, where the vector ∇ρ is the gradi-
ent of the scalar field ρ :

.

A similar exercise can be performed for each
component of velocity, and we can write the x-com-
ponent of acceleration as 

(4a)

etc. Combining all three components in vector short-
hand we write

(4b)

but care is needed because the quantity ∇u is not
defined in standard vector notation. Note that ∂u/∂t
is the local acceleration, (u.∇)u the convective
acceleration. Note too that the convective accelera-
tion is nonlinear in u, which is the source of the
great complexity of the mathematics and physics of
fluid motion.

Conservation of mass

This is a fundamental principle, stating that for
any closed volume fixed in space, the rate of
increase of mass within the volume is equal to the
net rate at which fluid enters across the surface of
the volume. When applied to the arbitrary small rec-
tangular volume depicted in fig. 1, this principle
gives: 

Dividing by ∆x ∆y ∆ z and taking the limit as the
volume becomes very small we get 

+∆x∆y ρw[ ]z
− ρw[ ]z+∆z( ).

+∆z∆x ρv[ ]y
− ρv[ ]y+∆y( ) +

∆x∆y∆z
∂ρ
∂t

= ∆y∆z ρu[ ]x
− ρu[ ]x +∆x( ) +

Du
Dt

=
∂u
∂t

+ (u.∇)u,

Du

Dt
=
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
,

∇ρ =
∂ρ
∂x

,
∂ρ
∂y

,
∂ρ
∂z

⎛
⎝
⎜

⎞
⎠
⎟

=
∂ρ
∂t

+ u.∇ρ

=
∂ρ
∂t

+ u
∂ρ
∂x

+ v
∂ρ
∂y

+ w
∂ρ
∂z

=
∂ρ
∂x

δx

δt
+
∂ρ
∂y

δy

δt
+
∂ρ
∂z

δz

δt
+
∂ρ
∂t

Dρ
Dt

=  lim
δt→0

ρ(x + δx, t +δt) − ρ(x, t)
δt

δx = u(x, t)δt
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FIG. 1. – Mass flow into and out of a small rectangular region of
space. 



(5a)

or (in shorthand)

(5b)

where we have introduced the divergence of a vec-
tor. Differentiating the products in (5a) and using
(3), we obtain

(6)

This says that the rate of change of density of a fluid
element is positive if the divergence of the velocity
field is negative, i.e. if there is a tendency for the
flow to converge on that element.

If a fluid is incompressible (as liquids often are,
effectively) then even if its density is not uniform
everywhere (e.g. in a stratified ocean) the density of
each fluid element cannot change, so 

(7)

everywhere, and the velocity field must satisfy

(8a)
or

. (8b)

This is an important constraint on the flow of an
incompressible fluid.

The Navier-Stokes equations

Newton’s Laws of Motion

Newton’s first two laws state that if a particle (or
fluid element) has an acceleration then it must be
experiencing a force (vector) equal to the product of
the acceleration and the mass of the particle:

force = mass × acceleration.

For any collection of particles this becomes

net force = rate of change of momentum

where the momentum of a particle is the product of
its mass and its velocity. Newton’s third law states

that, if two elements A and B exert forces on each
other, the force exerted by A on B is the negative of
the force exerted by B on A.

To apply these laws to a region of continuous
fluid, the region must be thought of as split up into
a large number of small fluid elements (fig. 2), one
of which, at point x and time t, has volume ∆V , say.
Then the mass of the element is ρ (x,t) ∆V , and its
acceleration is Du/Dt evaluated at (x,t). What is the
force?

Body force and stress

The force on an element consists in general of
two parts, a body force such as gravity exerted on
the element independently of its neighbours, and
surface forces exerted on the element by all the other
elements (or boundaries) with which it is in contact.
The gravitational body force on the element ∆V is
gρ (x, t) ∆V , where g is the gravitational accelera-
tion. The surface force acting on a small planar sur-
face, part of the surface of the element of interest,
can be shown to be proportional to the area of the
surface, ∆A say, and simply related to its orientation,
as represented by the perpendicular (normal) unit
vector n (fig. 3). The force per unit area, or stress, is
then given by

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

divu = 0

Dρ
Dt

= 0

Dρ
Dt

= −ρdivu.

∂ρ
∂t

= −div ρu( )

∂ρ
∂t

= −
∂
∂x

ρu( ) − ∂
∂y

ρv( ) − ∂
∂z

ρw( )
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FIG. 2. – An arbitrary region of fluid divided up into small rectan-
gular elements (depicted only in two dimensions).

FIG. 3. – Surface force on an arbitrary small surface element embed-
ded in the fluid, with area ∆A and normal n. F is the force exerted

by the fluid on side 1, on the fluid on side 2.



(9a)

or, in shorthand,

F = σ≈ n (9b)

where σ≈ is a matrix quantity, or tensor, depending
on x and t but not n or ∆A. σ≈ is called the stress ten-
sor, and can be shown to be symmetric (i.e. σyx= σxy,
etc) so it has just 6 independent components.

It is an experimental observation that the stress in
a fluid at rest has a magnitude independent of n and
is always parallel to n and negative, i.e. compres-
sive. This means that σxy= σyz= σzx= 0, σxx= σyy=
σzz= −p, say, where p is the positive pressure (hydro-
static pressure); alternatively,

σ≈ = –p I≈ (10)

where I≈ is the identity matrix.

The relation between stress and deformation rate

In a moving fluid, the motion of a general fluid
element can be thought of as being broken up into
three parts: translation as a rigid body, rotation as a
rigid body, and deformation (see fig. 4).
Quantitatively, the translation is represented by the
velocity field u, the rigid rotation is represented by
the curl of the velocity field, or vorticity,

ω = curlu , (11)

and the deformation is represented by the rate of
deformation (or rate of strain) e≈ which, like stress, is
a symmetric tensor quantity made up of the sym-
metric part of the velocity gradient tensor. Formally,

(12)

or, in full component form,

(13)

Note that the sum of the diagonal elements of e≈ is
equal to div u.

It is a further matter of experimental observation
that, whenever there is motion in which deformation
is taking place, a stress is set up in the fluid which
tends to resist that deformation, analogous to fric-
tion. The property of the fluid that causes this stress
is its viscosity. Leaving aside pathological (‘non-
Newtonian’) fluids the resisting stress is generally
proportional to the deformation rate. Combining this
stress with pressure, we obtain the constitutive equa-
tion for a Newtonian fluid:

σ≈ = –p I≈ + 2µ e≈ – 2/3µ div uI≈ (14)

The last term is zero in an incompressible fluid, and
we shall ignore it henceforth. The quantity µ is the
dynamic viscosity of the fluid.

To illustrate the concept of viscosity, consider the
unidirectional shear flow depicted in fig. 4 where
the plane y=0 is taken to be a rigid boundary. The
normal vector n is in the y-direction, so equations
(9) show that the stress on the boundary is 

From (14) this becomes

but because the velocity is in the x-direction only
and varies with y only, the only non-zero component 

F = 2µexy ,− p + µeyy ,µezy( ),

F = σ xy ,σ yy ,σ zy( ).

e
≈

=

∂u

∂x

1
2

∂u

∂y
+
∂v

∂x

⎛

⎝
⎜

⎞

⎠
⎟

1
2

∂u

∂z
+
∂w
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⎛
⎝
⎜

⎞
⎠
⎟

1
2

∂v

∂x
+
∂u

∂y

⎛

⎝
⎜

⎞

⎠
⎟

∂v

∂y

1
2

∂v

∂z
+
∂w

∂y

⎛

⎝
⎜

⎞

⎠
⎟

1
2

∂w

∂x
+
∂u

∂z
⎛
⎝
⎜

⎞
⎠
⎟

1
2

∂w

∂y
+
∂v

∂z

⎛

⎝
⎜

⎞

⎠
⎟

∂w

∂z

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

e
≈

=
1
2

∇u +∇uT( )
Fz = σ zxnx + σ zyny + σ zznz

Fy = σ yxnx + σ yyny + σ yznz

Fx = σ xxnx + σ xyny + σ xznz
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FIG. 4. – A unidirectional shear flow in which the velocity is in the
x- direction and varies linearly with the perpendicular component 
y : u = αy. In time ∆t a small rectangular fluid element at level y0 is
translated a distance αy0∆t, rotated through an angle α/2, and
deformed so that the horizontal surfaces remain horizontal, and the

vertical surfaces are rotated through an angle α. 



of e≈ is . Hence

In other words, the boundary experiences a perpen-
dicular stress, downwards, of magnitude p, the pres-
sure, and a tangential stress, in the x-direction, equal
to µ times the velocity gradient ∂u/∂y. (It can be
seen from (9) and (14) that tangential stresses are
always of viscous origin.)

The Navier-Stokes equations

The easiest way to apply Newton’s Laws to a
moving fluid is to consider the rectangular block
element in fig. 5. Newton’s Law says that the mass
of the element multiplied by its acceleration is equal
to the total force acting on it, i.e. the sum of the body
force and the surface forces over all six faces. The
resulting equation is a vector equation; we will con-
sider just the x-component in detail. The x-compo-
nent of the stress forces on the faces perpendicular
to the x-axis is the difference between the perpen-
dicular stress σ

xx evaluated at the right-hand face
(x+∆x) and that evaluated at the left-hand face (x)
multiplied by the area of those faces, ∆y∆z, i.e.

If ∆x is small enough, this is

The x-component of the forces on the faces per-
pendicular to the y-axis is 

and similarly for the faces perpendicular to the z-
axis. Hence the x-component of Newton’s Law
gives

or, dividing by the element volume,

(15a)

Similar equations arise for the y- and z-components,
and they can be combined in vector form to give

ρ
Du

Dt
= ρgx +

∂σ xx

∂x
+
∂σ xy

∂y
+
∂σ xz

∂z
.

ρ∆x∆y∆z( ) Du

Dt
= ρgx( )∆x∆y∆z +

+
∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

⎛

⎝
⎜

⎞

⎠
⎟ ∆x∆y∆z

σ xy y+∆y−σ xy y

⎛
⎝

⎞
⎠ ∆z∆x =

∂σ xy

∂y
∆x∆y∆z,

∂σ xx

∂x
∆x∆y∆z.

σ xx x +∆x−σ xx x( )∆y∆z.

F = µ
∂u

∂y
,− p,0

⎛
⎝
⎜

⎞
⎠
⎟

exy =
1
2
∂u

∂y
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FIG. 5. – Normal and tangential surface forces per unit area (stress) on a small rectangular fluid element in motion. 



(15b)

The equations can be further transformed, using
the constitutive equation (14) (with div u = 0) and
(13) to express e≈ in terms of u, to give for (15a)

(16a)

Similarly in the y- and z-directions:

(16b)

(16c)

In these equations, it should not be forgotten that 
Du/Dt etc are given by equations (4).

Finally, the above three equations can be com-
pressed into a single vector equation as follows:

(16d)

where the symbol is shorthand for

Equations (16a-c), or (16d), are the Navier-Stokes
equations for the motion of a Newtonian viscous
fluid. Recall that the left side of (16d) represents the
mass-acceleration, or inertia terms in the equation,
while the three terms on the right side are respec-
tively the body force, the pressure gradient, and the
viscous term.

The four equations (16a-c) and (8b) are four non-
linear partial differential equations governing four
unknowns, the three velocity components u,v,w, and
the pressure p, each of which is in general a function
of four variables, x, y, z and t. Note that if the densi-
ty ρ is variable, that is a fifth unknown, and the cor-
responding fifth equation is (7). Not surprisingly,
such equations cannot be solved in general, but they
can be used as a framework to understand the
physics of fluid motion in a variety of circum-
stances.

A particular simplification that can sometimes be
made is to neglect viscosity altogether (to assume
that the fluid is inviscid). Conditions in which this is

permitted are discussed below. When it is allowed,
however, we can put µ = 0 in equations (16) and
these are greatly simplified.

For quantitative purposes we should note the val-
ues of density and viscosity for fresh water and air
at 1 atmosphere pressure and at different tempera-
tures:

Temp Water Air (dry)
ρ(kgm-3) µ(kgm-1s-1) ρ(kgm-3) µ(kgm-1s-1)

0˚C 1.0000 x 103 1.787 x 10-3 1.293 1.71 x 10-5

10˚C 0.9997 x 103 1.304 x 10-3 1.247 1.76 x 10-5

20˚C 0.9982 x 103 1.002 x 10-3 1.205 1.81 x 10-5

Boundary conditions

Whether the fluid is viscous or not, it cannot
cross the interface between itself and another medi-
um (fluid or solid), so the normal component of
velocity of the fluid at the interface must equal the
normal component of the velocity of the interface
itself:

(17a)

where U is the interface velocity. In particular, on a
solid boundary at rest,

n.u = 0 (17b)

In a viscous fluid it is another empirical fact that
the velocity is continuous everywhere, and in partic-
ular that the tangential component of the velocity of
the fluid at the interface is equal to that of the inter-
face - the no-slip condition. Hence

u = U (18)

at the interface (u = 0 on a solid boundary at rest).
There are boundary conditions on stress as

well as on velocity. In general they can be sum-
marised by the statement that the stress F (eq.9)
must be continuous across every surface (not the
stress tensor, note, just σ≈ .n), a condition that fol-
lows from Newton’s third law. At a solid bound-
ary this condition tells you what the force per unit
area is and the total stress force on the boundary
as a whole is obtained by integrating the stress
over the boundary (thus the total force exerted by
the fluid on an immersed solid body can be calcu-
lated).

un = Un or n.u = n.U

∂ 2

∂x2 +
∂ 2

∂y2 +
∂
∂z2 .

∇2

ρ
Du
Dt

= ρg −∇p + µ∇2u

ρ
Dw

Dt
= ρgz −

∂p

∂z
+ µ

∂ 2w

∂x2 +
∂ 2w

∂y2 +
∂ 2w

∂z2

⎛
⎝
⎜

⎞
⎠
⎟ .

ρ
Dv

Dt
= ρgy −

∂p

∂y
+ µ

∂ 2v

∂x2 +
∂ 2v

∂y2 +
∂ 2v

∂z2

⎛

⎝
⎜

⎞

⎠
⎟

ρ
Du

Dt
= ρgx −

∂p

∂x
+ µ

∂ 2u

∂x2 +
∂ 2u

∂y2 +
∂ 2u

∂z2

⎛
⎝
⎜

⎞
⎠
⎟ .

ρ
Du
Dt

= ρg + divσ
≈
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When the fluid of interest is water, and the
boundary is its interface with the air, the dynamics
of the air can often be neglected and the atmosphere
can be thought of as just exerting a pressure on the
liquid. Then the boundary conditions on the liquid’s
motion are that its pressure (modified by a small vis-
cous normal stress) is equal to atmospheric pressure
and that the viscous shear stress is zero.

CONSEQUENCES: PHYSICAL PHENOMENA

Hydrostatics

We consider a fluid at rest in the gravitational
field, with a free upper surface at which the pressure
is atmospheric. We choose a coordinate system x, y,
z such that z is measured vertically upwards, so gx =
gy = 0 and gz = -g, and we choose z = 0 as the level
of the free surface. The density ρ may vary with
height, z. Thus all components of u are zero, and
pressure p = p

atm at z = 0. The Navier-Stokes equa-
tions (16) reduce simply to

Hence
(19)

or, for a fluid of constant density,

:

the pressure increases with depth below the free sur-
face (z increasingly negative).

The above results are independent of whether
there is a body at rest submerged in the fluid. If there
is, one can calculate the total force exerted by the
fluid by integrating the pressure, multiplied by the
appropriate component of the normal vector n, over
the body surface. The result is that, whatever the
shape of the body, the net force is an upthrust and
equal to g times the mass of fluid displaced by the
body. This is Archimedes’ principle. If the fluid den-
sity is uniform, and the body has uniform density ρb,
then the net force on the body, gravitational and
upthrust, corresponds to a downwards force equal to 

(20)

where V is the volume of the body. The quantity 
(ρb – ρ) is called the reduced density of the body.

Note that, for constant density problems in which
the pressure does not arise explicitly in the boundary
conditions (e.g. at a free surface), the gravity term
can be removed from the equations by including it in
an effective pressure, pe. Put

(21)

in equations (16) (with gx = gy = 0, gz= -g) and see
that g disappears from the equations, as long as pe
replaces p. 

Flow past bodies

The flow of a homogeneous incompressible
fluid of density ρ and viscosity µ past bodies has
always been of interest to fluid dynamicists in
general and to oceanographers or ocean engineers
in particular. We are concerned both with fixed
bodies, past which the flow is driven at a given
speed (or, equivalently, bodies impelled by an
external force through a fluid otherwise at rest)
and with self-propelled bodies such as marine
organisms.

Non-dimensionalisation: the Reynolds number

Consider a fixed rigid body, with a typical
length scale L, in a fluid which far away has con-
stant, uniform velocity U∞ in the x-direction (fig.
6). Whenever we want to consider a particular
body, we choose a sphere of radius a, diameter L
= 2a. The governing equations are (8) and (16),
and the boundary conditions on the velocity field
are

u = v = w = 0 on the body surface, S (22)

at infinity. (23)u →U∞ ,v → 0, w → 0

pe = p + gρz

ρb − ρ( )Vg

p = patm − gρz

p = patm + g ρdz
z

0
∫

∂p

∂z
= −ρg.

∂p

∂x
=
∂p

∂y
= 0,
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FIG. 6. – Flow of a uniform stream with velocity U∞ in the x-direc-
tion past a body with boundary S which has a typical length scale L.



Usually the flow will be taken to be steady, ie

, but we shall also wish to think about devel-

opment of the flow from rest.
For a body of given shape, the details of the flow

(i.e. the velocity and pressure at all points in the
fluid, the force on the body, etc) will depend on U∞,
L , µ and ρ as well as on the shape of the body.
However, we can show that the flow in fact depends
only on one dimensionless parameter, the Reynolds
number

(24)

and not on all four quantities separately, so only
one range of experiments (or computations) would
be required to investigate the flow, not four. The
proof arises when we express the equations in
dimensionless form by making the following trans-
formations:

Then the equations become: (8b):

; (25)

(16a), with replaced by (4a):

(26)

and there are similar equations starting with ∂v´/∂t´,
∂w´/∂t´. The boundary condition (22) is unchanged,
though the boundary S is now non-dimensional, so
its shape is important but L no longer appears.
Boundary condition (23) becomes

at infinity. (27)

Thus Re is the only parameter involving the physi-
cal inputs to the problem that still arises.

The drag force on the body (parallel to U∞)
proves to be of the form:

(28)

where A (proportional to L2)is the frontal area of the
body (πL2/4 for a sphere) and C

D
is called the drag

coefficient. It is a dimensionless number, computed
by integrating the dimensionless stress over the sur-
face of the body.

From now on time and space do not permit deriva-
tion of the results from the equations. Results will be
quoted, and discussed physically where appropriate.

It can be seen from (26) that, in order of mag-
nitude terms, Re represents the ratio of the non-
linear inertia terms on the left hand side of the
equation to the viscous terms on the right. The
flow past a rigid body has a totally different char-
acter according as Re is much less than or much
greater than 1.

Low Reynolds number flow

When Re <<1, viscous forces dominate the flow
and inertia is negligible. Reverting to dimensional
form, the Navier-Stokes equations (16d) reduce to
the Stokes equations 

, (29)

where gravity has been incorporated into p
e using

eq. (21). The conservation of mass equation div u =
0, is of course unchanged. Several important con-
clusions can be deduced from this linear set of equa-
tions (and boundary conditions).

(i) Drag The force on the body is linearly related
to the velocity and the viscosity: thus, for example,
the drag is given by

(30)

for some dimensionless constant k (thus the drag
coefficient C

D
is inversely proportional to Re). In

particular, for a sphere of radius a, k = 3π, so

(31)

It is interesting to note that the pressure and the
viscous shear stress on the body surface con-
tribute comparable amounts to the drag. The net
gravitational force on a sedimenting sphere of
density ρ

b
, from (20), is (ρb-ρ)·4/3πa3g. This must

be balanced by the drag, 6πU
sa, where Us is the

sedimentation speed. Equating the two gives

(32)Us =
2
9

ρb − ρ( )ga2

µ

D = 6πµU∞a

D = kµU∞L

∇pe = µ∇2u

D = 1
2 ρU 2 ACD

u′→1, v′→ 0, w′→ 0

∂u′
∂t ′

+ u′
∂u′
∂x′

+ v'
∂u′
∂y′

+ w'
∂u′
∂z′

=

= −
∂p′
∂x′

+
1

Re
∂ 2u′
∂x′2

+
∂ 2u′
∂y′2

+
∂ 2u′
∂z′2

⎡

⎣
⎢

⎤

⎦
⎥

Du

Dt

∂u′
∂x′

+
∂v′
∂y′

+
∂w′
∂z′

= 0

u′= u / U∞ , v′= v / U∞ , w′= w / U∞ , p′= p / ρU∞
2 .

x′= x / L, y′= y / L, z′= z / L, t ′= U∞t / L,

Re =
ρLU∞

µ
,

∂
∂t

≡ 0
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For example, a sphere of radius 10 µm, with density
10% greater than water (ρ=103kg m-3, µ≈11kg m-1s-1)
will sediment out at only 20 µm-1, whereas if the radius
is 100 µm, the sedimentation speed will be 2 mms-1.

(ii) Quasi-steadiness. Because the ∂/∂t term in
the equations vanishes at low Reynolds number, it is
immaterial whether the relative velocity of the body
(or parts of it) and the fluid is steady or not. The
flow at any instant is the same as if the boundary
motions at that instant had been maintained steadily
for a long time - i.e. the flow (and the drag force etc)
is quasi-steady.

(iii) The far field. It can be shown that the far
field flow, that is the departure of the velocity
field from the uniform stream U∞, dies off very
slowly as the distance r from an origin inside the
body becomes large. In fact it dies off as 1/r,
much more slowly, for example, than the inverse
square law of Newtonian gravitation or electro-
statics. This has an important effect on particle -
particle interactions in suspensions. Moreover,
this far field flow is proportional to the net force
vector –D exerted by the body on the fluid, inde-
pendent of the shape of the body. Thus, in vector
form, we can write

(33)

where

(34)

Measuring the far field is therefore one potential
way of estimating the force on the body.

The only exception to the above is the case
where the net force on the body (or fluid) is zero,
as for a neutrally buoyant, self-propelled micro-
organism. In that case P is zero, the far field dies
off like 1/r2, and it does depend on the shape of
the body and the details of how it is propelling
itself.

(iv) Uniqueness and Reversibility. If u is a
solution for the velocity field with a given veloci-
ty distribution us on the boundary S, then it is the
only possible solution (that seems obvious, but is
not true for large Re). It also follows that –u is the
(unique) velocity field if the boundary velocities
are reversed, to –us. Thus if a boundary moves
backwards and forwards reversibly, all elements of
the fluid will also move backwards and forwards
reversibly, and will not have moved, relative to the
body, after a whole number of cycles. Hence a
micro-organism must have an irreversible beat in
order to swim.

(v) Flagellar propulsion. Many micro-organ-
isms swim by beating or sending a wave down
one or more flagella. Fig. 7 sketches a monofla-
gellate (e.g. a spermatozoon). It sends a, usually
helical, wave along the flagellum from the head.
This is a non-reversing motion because the wave
constantly propagates along. The reason that
such a wave can produce a net thrust, to over-
come the drag on the head (and on the tail too) is
that about twice as much force is generated by a

P =
-D

8πµ
.

u − U∞ ≈
1
r

P +
P.x( )x

r2
⎡
⎣⎢

⎤
⎦⎥
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FIG. 7. – (a) Sketch of a swimming spermatozoon, showing its position at two successive times and indicating that, while
the organism swims to its left, the wave of bending on its flagellum propagates to the right. (b) Blow up of a small element
δs of the flagellum indicating the force components normal and tangential to it, proportional to the normal and tangential 

components of relative velocity. 
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FIG. 8. – Photographs of streamlines (a, b) or streaklines (c) for steady flow past a circular cylinder at
different values of the Reynolds number (M.Van Dyke, 1982): (a) Re <<1, (b) Re ≈ 26, (c) Re ≈ 105.

a

b
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segment of the flagellum moving perpendicular
to itself relative to the water as is generated by
the same segment moving parallel to itself. This
fact forms the basis of resistive force theory for
flagellar propulsion, which is a simple and rea-
sonably accurate model for the analysis of flagel-
lar locomotion.

Vorticity

The dynamics of fluid flow can often be most
deeply understood in terms of the vorticity, defined
by equation (11) and representing the local rotation
of fluid elements. High velocity gradients corre-
spond to high vorticity (see fig. 4). If we take the
curl of every term in the Navier-Stokes equation we
obtain the following vorticity equation (in vector
notation):

(35)

where ν = µ/ρ is the kinematic viscosity of the
fluid (assumed constant). This equation tells us
that the vorticity, evaluated at a fluid element
locally parallel to ωω, changes, as that element
moves, as a result of three effects, each repre-
sented by one of the terms on the right hand side
of (35). The first term can be shown to be associ-
ated with rotation and stretching (or compres-
sion) of the fluid element, so that the direction of
ωω remains parallel to the original fluid element,
and increases in proportion as the length of that
element changes. Such vortex-line stretching is a
dominant effect in the generation and mainte-
nance of turbulence. It is totally absent in a two-
dimensional (2D) flow in which there is no
velocity component in one of the coordinate
directions (say z) and the variables are indepen-
dent of z. The second term represents the effect
of viscosity, and is diffusion-like in that vorticity
tends to spread out from elements where it is high
to those where it is low. The last term comes
about only in non-uniform (e.g. stratified) fluids,
and can be important in some oceanographic sit-
uations.

It can also be shown that, in a flow started
from rest, no vorticity develops anywhere until
viscous diffusion has had an effect there. As we
shall see, the only source of vorticity, in such a
flow and in the absence of the last term in (35),
occurs at solid boundaries on account of the no-
slip condition.

Higher Reynolds number. 

It is convenient now to restrict attention to a 2D
flow of a homogeneous fluid past a 2D body such as
a circular cylinder (fig. 8). In such a 2-D flow, with
velocity components u = (u,v,0), functions of x,y and
t, the vorticity is entirely in the third, z, direction,
and is given by

There is no vortex-line stretching, and the only
effect which can generate vorticity anywhere is
viscosity. Let us suppose that the uniform stream
at infinity is switched on from rest at the initial
instant. Initially there is no vorticity anywhere,
and the initial irrotational velocity field is easy to
calculate. It satisfies all the governing equations
and all boundary conditions except the no-slip
condition at the cylinder surface. The predicted
slip velocity therefore generates an infinite veloci-
ty gradient ∂u/∂y and hence a thin sheet, of infinite
vorticity at the cylinder surface. Because of vis-
cosity, this immediately starts to diffuse out from
the surface. At low values of Re, when viscosity is
dominant and the convective term (u.∇)ωω in (35)
is negligible, the diffusion is rapid, and vorticity
spreads out a long way in all directions. An even-
tual steady state is set up in which the flow is
almost totally symmetric front-to-back (fig. 8a);
unlike the spherical case, the drag coefficient is
not quite inversely proportional to the Reynolds
number:

At somewhat higher values of Re, the (u.∇)ωω
term is not totally negligible, and once vorticity has
reached any particular fluid element it tends to be
carried along by it as well as diffusing on to other
elements. Hence a front-to-back asymmetry devel-
ops. For Re greater than about 5 the flow actually
separates from the wall of the cylinder, forming two
slowly recirculating flow regions (eddies) at the
rear. At still higher Re, it is observed that the eddies
tend to break away alternately from the two sides of
the cylinder, usually at a well-defined frequency
equal to about 0.42 U∞/a for Re ≥ 600, and steady
flow is no longer possible. At higher Re the wake
becomes turbulent (i.e. random and three-dimen-
sional) and at Re≈ 2 ×105 the flow on the cylinder
surface becomes turbulent.

CD =
8π

Re log 7.4 / Re( )
.

ω =
∂v

∂x
−
∂u

∂y
.

∂ω
∂t

+ u.∇( )ω = ω .∇( )u+ν∇2ω +
1
ρ2 ∇ρ ∧∇p
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Steady flows at relatively high Reynolds number
do seem to be possible past streamlined bodies such
as a wing (or a fish dragged through the fluid), see
fig. 9. Diffusion causes vorticity to occupy a
(boundary) layer of thickness (νt)1/2 after time t.
However, even a fluid element near the leading edge
at first will have been swept off downstream past the
trailing edge after a time t = L/U∞, where L is the
length of the wing chord. Hence the greatest thick-
ness that the boundary layer on the body can have is 

(36)

and it is easy to see that a steady state can develop
everywhere on the body, with a boundary layer of
thickness up to δs, and a thin wake region, also con-
taining vorticity, downstream. Note that the bound-
ary layer of vorticity remains thin compared with the
chord length if δs << L, i.e. Re >>1. In that case (and
only then) neglecting viscosity altogether, and for-
getting about the boundary layer, is accurate
enough, except in calculating the drag.

Drag on a symmetric body at large Reynolds
number. In order to estimate the force on a body it
is necessary to work out the distribution of pressureδ s = νL / U∞( )1/ 2

,
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boundary layer
wake

FIG. 9. – Sketch of boundary layer and wake for steady flow at high Reynolds number past a symmetric streamlined body.
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FIG. 10. – Sketch of streamlines and pressures for flow past a circular cylinder. (a) Idealised flow of a fluid with no viscosity; (b) separated
flow at fairly high Reynolds number in a viscous fluid. 



round the body. In a steady flow of constant density
fluid in which viscosity is unimportant (e.g. outside
the boundary layer and wake of a body) equation
(16d) can be integrated to give the result that the
quantity

(37a)

along streamlines of the flow. Here z is measured
vertically upwards and |u| is the total fluid speed.
This result is equivalent to the Newtonian principle
of conservation of energy; equation (37a) is called
Bernoulli’s equation. If we forget about the gravita-
tional contribution, replacing p + pgz by the effec-
tive pressure p

e
(eq. 21), equation (37a) becomes

p
e

= constant – (37b)

henceforth we just write p for p
e. If the fluid speeds

up, the pressure falls, and vice versa, which is intu-
itively obvious since a favourable pressure gradient
is clearly required to give fluid elements positive
acceleration.

In the case of flow past a symmetric body, (fig.
10a), all streamlines start from a region of uniform
pressure (p∞ say) and uniform velocity (U∞), so the
constant in (37b) is the same for all streamlines,
p∞+1/2U2

∞. If viscosity were really negligible, then
the flow round a circular cylinder would be sym-

metric (fig. 10a). At the front stagnation point S1,
the point of zero velocity where the streamline
dividing flow above from flow below impinges, the
pressure is high (p = p∞+1/2ρU2

∞), and this high
pressure is balanced by an equally high pressure at
the rear stagnation point S2. The pressure at the sides
(A1, A2 ) is low (p = p∞–3/2U2

∞). The net effect is that
the hydrodynamic force on the cylinder is zero.

In a viscous fluid, as stated above, there is a thin
boundary layer on the front half, in which the
velocity falls from a large value to zero, so the pres-
sure distribution is similar to that described above;
however the flow separates on the rear half and
things are very different. The reason for the separa-
tion is that the adverse pressure gradient (the pres-
sure rise), from A1 to S2 say, causes the low veloci-
ty in the boundary layer to tend to reverse its direc-
tion, and it is observed that separation occurs as
soon as flow reversal takes place. In the separated
flow region (fig. 10b) the fluid velocity is low and
the pressure remains close to its value at the sides.
Thus there is a front-to-back pressure difference
proportional to ρU2

∞, and the drag coefficient CD

(eq. 28) is approximately constant, independent of
Re as long as Re is large (see fig. 11). The direct
contribution of tangential viscous stresses to the
drag is negligibly small, although it is the presence
of viscosity which causes the flow separation in the
first place.

1
2
ρ u 2;

p + pgz +
1
2
ρ u 2 = constant
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FIG. 11.  – Log-log plot of drag coefficient versus Reynolds number for steady flow past a circular cylinder. [The sharp reduction in C
D

at 
Re ≈ 2 × 105 is associated with the transition to turbulence in the boundary layer]. Redrawn from Schlichting (1968).



Lift. For a symmetric streamlined body (fig. 9)
flow separation occurs only very near the trailing
edge, and direct viscous drag is more important.
However, if such a streamlined body (or wing) is
tilted so that the oncoming flow makes an angle of
incidence with its centre plane, viscosity again has
an important effect. In general, a non-viscous flow
past a wing at incidence would turn sharply round
the trailing edge, where the velocity would be
extremely high and the pressure extremely low (fig.
12a). As the flow starts up from rest, viscosity caus-
es separation at the corner, a concentrated vortex is
shed and left behind, and thereafter the flow is
forced to come tangentially off the trailing edge: the
Kutta-condition (fig. 12b). In order to achieve this
tangential flow, the velocity on top of the wing must
increase and the velocity below must decrease. It
follows from Bernoulli’s equation that the pressure
above the wing must fall, and that below rise, so a
transverse force is generated. This is call lift and
keeps aircraft and birds in the air against gravity.
The magnitude of the lift is also represented by a lift
coefficient C

L :

(38)

where S is the horizontal area of the wing. Like C
D,

C
L is approximately independent of Re for large Re .

Added mass. We have seen that the force on a
body in an inviscid fluid is zero when the flow is
steady. When the flow is unsteady, however, the
force is non-zero, because accelerating the body rel-
ative to the fluid requires that the fluid also has to be
accelerated. Thus the body exerts a force on the
fluid and so, by Newton’s third law, the fluid exerts
an equal and opposite force on the body. In all cases,
this force is equal in magnitude to the acceleration
of the body relative to the fluid multiplied by the
mass of fluid displaced by the body (ρV in the nota-
tion of eq. 20) multiplied by a constant, say β:

F=βρV dU/dt. (39)

For a sphere, β = 0.5; for a circular cylinder, β = 1.
The quantity βρV is call the added mass of the body
in question (recall that ρ is the fluid density). The
corresponding force, given by (39), is called the
acceleration reaction, or the reactive force.

Fish swimming. We have seen that flagellates
such as spermatozoa swim by sending bending
waves down their tails, and thrust is generated
through the viscous, resistive force. Inertia is negli-

gible because the Reynolds number is small. For
most fish, the Reynolds number is large, but never-
theless many fish also swim by sending a bending
wave down their bodies and tails. In this case, how-
ever, thrust is generated primarily by the reactive
force associated with the sideways acceleration of the
elements of fluid as they pass down the animal (rela-
tive to a frame of reference fixed in the fish’s nose).
Lighthill has developed a simple, reactive-force
model for fish swimming.

Flow in the open ocean

Water waves

The most obvious dynamical feature of the
ocean, to even a casual observer, is the presence of
surface waves, of a variety of lengths and heights.
Waves are mainly generated as a result of stresses
exerted by the wind, although they can also arise
through the impact or relative motion of foreign
bodies such as rain drops or ships. Once generated,
however, waves can propagate over large distances
and persist for long times, unaffected by the atmos-
phere or solid bodies.

L =
1
2

U∞
2 SCL ,
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(a)

(b)

FIG. 12. – Flow past a streamlined body at incidence. (a) Idealised
flow of a fluid with no viscosity - large velocity and pressure gradi-
ent round the trailing edge. (b) In a viscous fluid the flow must
come smoothly off the trailing edge, which explains the generation 

of lift (see text). 



In a periodic wave motion, all fluid elements
affected by it experience oscillations. Like all
oscillations, such as that of a simple pendulum,
these oscillations come about as an interaction
between a restoring force, tending to restore a par-
ticle to a nearby equilibrium position, and inertia,
which causes the particle to overshoot each time it
reaches its equilibrium position (in real systems
there is also some viscous damping, which causes
the amplitude of the oscillations to die out after a
long time, if there is no further stimulation; we
ignore damping here). In the case of a simple pen-
dulum (a mass suspended by a light string) the
equilibrium state is one in which the string is ver-
tical and the mass at rest, the restoring force is
gravity and the inertia is the momentum of the
mass itself. In the case of water waves, the equilib-
rium state has the free surface horizontal, the
restoring force is again gravity (except for small
wavelengths, when surface tension is also impor-
tant) and the inertia is the momentum of the fluid.
Viscosity is negligible because there are no solid
boundaries generating vorticity.

In an oscillation of small amplitude, every parti-
cle exhibits simple harmonic motion: its vertical dis-
placement, say Y, from equilibrium, varies with time
according to the differential equation

(40)

The general solution for Y is a sinusoidal oscilla-
tion of the form

where A and φ are constants (determined by initial
conditions), the amplitude and phase respectively,
and ω is the angular frequency of the oscillation
(the frequency in Hertz is ω/2π). In the case of a
simple pendulum, ω = (g/l)1/2 where l is the length
of the string. In the case of simple water waves of
wave length λ = 2π/k (k is the wave number), in an
ocean whose depth is much greater than λ, we
have

ω = (gk)1/2 (41)

as long as surface tension is negligible.
Suppose a parallel-crested (one-dimensional)

train of such waves is propagating in the x-direction.
Then the displacement of the free surface will be
given by

(42)

again for constant A and φ. The speed of propagation
of the wave crests, or phase velocity, is 

(43)

Thus long waves (small k) travel more rapidly than
short waves (large k). This explains why, when the
waves are generated by a localised disturbance, such
as a storm at sea, or a stone dropped in a pond, the
longer waves (swell) arrive at the shore first. In this
case, the wave front travels at a different speed,
called the group velocity, c

g:

(44)

so that wave crests, travelling faster, appear to arise
at the back of the packet of waves, and to disappear
at the front.

When a water wave propagates, with its free sur-
face given by (42), fluid elements at and below the
surface move in circular paths, and the amplitude of
their motion falls off exponentially with depth below
the surface: the amplitude is proportional to Aekz

when the undisturbed surface is at z = 0. Thus the
amplitude is negligibly small at a depth of only half
a wavelength (kz = -π). This explains why the theo-
ry of waves in very deep water works well in rela-
tively shallow water, too, with depth h greater than
half a wavelength. When the waves are very long, or
the water very shallow, equation (41) is replaced by

(45)

Small amplitude wave theory is very useful,
because the equations are linear and a general
motion can be made up from the addition of many
sinusoidal components such as (42) (a Fourier series
or transform). At larger amplitudes, nonlinear
effects become important and the theory becomes
less general, although many interesting and impor-
tant phenomena arise, such as wave breaking.

Internal waves

Although the water in the ocean is effectively
incompressible, it does not have uniform density
because it is stratified on account of the variation
with depth of the pressure and, to a lesser extent, the
temperature and the salinity. The temperature/densi-
ty distribution is marked usually by one or more

ω = gk tanh kh( )1/ 2

cg =
dω
dk

=
1
2

g

k
⎛
⎝

⎞
⎠

1
2
,

c =
ω
k

=
g

k
⎛
⎝

⎞
⎠

1 2

.

η = Acos(ωt − kx − φ ),

Y = Acos ωt − φ( )

d 2Y

dt 2 + ω 2Y = 0.

INTRODUCTION TO FLUID DYNAMICS 21



thermoclines, in which the density gradient is steep-
er than elsewhere. Whether the density gradient is
uniform or locally sharp, less dense fluid sits, in
equilibrium, above denser fluid. A disturbance to
this state causes some heavy fluid elements to rise
above their original level, and some light ones to fall
below. As in the case of surface waves, gravity then
provides a restoring force and internal gravity waves
can propagate. As for surface waves, a relation can
be calculated between the frequency and the wave
number of such waves. For example, if there is a
sharp interface between two deep regions of fluid
with densities ρ1 (above) and ρ2, then equation (41)
is replaced by 

(46)

This can be seen to give much lower frequencies
than (41) if (ρ2 – ρ1) is not large: if ρ2 – ρ1 = 0.1 ρ2 ,
then the frequency given by (46) is 4.4 times small-
er than that given by (41) (with ρ2 = ρ). The propa-
gation speed is correspondingly smaller, too.

When the density gradient is uniform, with

(47)

where N is a constant with the dimensions of a fre-
quency (the Brunt -Väisälä frequency), the situation
is a bit more complicated, because internal waves do
not have to propagate horizontally. Indeed, a wave
whose crests propagate at an angle θ to the horizon-
tal, so that the displacement of a fluid element is
given by

has a frequency ω given by

. (48)

However, the group velocity (velocity of a wave
front, or of energy propagation) is perpendicular to
the phase velocity, and in this case is given by the
vector

(49)

Rotating fluids: geostrophic flows

Gravity waves are (mostly) small-scale phenom-
ena for which the rotation of the earth is unimpor-
tant. That is not the case with ocean currents and the

large-scale circulation of the oceans. To analyse
such motions, it is necessary to recognise that the
natural frame of reference is fixed in the rotating
earth, and the governing equations of motion have to
be changed accordingly. If viscosity is neglected, the
equation of motion of a fluid in a frame of reference
rotating with constant angular velocity Ω becomes
(in place of (16d)):

(50)

Here g has been modified to include the small “cen-
trifugal force’’ term, and we could also incorporate
it into the pressure using (21). The additional term

is called the Coriolis force.
Time does not permit a thorough investigation of

the dynamics of rotating fluids. We consider only a
flow in which the Coriolis force is much larger than
the other inertia terms and therefore must by itself
balance the gradient in (effective) pressure: a
geostrophic flow. For such a flow, (50) reduces to

(51)

Suppose the flow is horizontal: u= (u, v, 0 ), with z
vertically upwards again. Then the horizontal com-
ponents of the pressure gradient are given by

(52)

where Ωυ is the vertical component of the earth’s
angular velocity (total angular velocity multiplied
by the sine of the latitude). The pressure gradient is
perpendicular to the velocity, or vice versa, indicat-
ing that if there is a horizontal pressure gradient, the
corresponding geostrophic flow will be perpendicu-
lar to it. This explains why the wind goes anticlock-
wise round atmospheric depressions in the northern
hemisphere (clockwise in the southern hemisphere).
Similar flows occur in the oceans, although the bar-
riers formed by the continents are impermeable,
unlike in the atmosphere.

The condition for a steady flow to be geostroph-
ic is that the inertia term (u.∇)u should be small
compared with the Coriolis term. Thus if U is a typ-
ical velocity magnitude, and L a length scale for the
flow, the geostrophic approximation will be a good
one if

i.e. the Rossby number should be small:

U 2

L
<< ΩvU,

∂p

∂x
= −Ωυv,

∂p

∂y
= +Ωυu

ρΩ∧u = −∇p.

ρΩ∧u

ρ
Du
Dt

+ ρΩ∧u = ρg −∇p.

cg =
N

k
sinθ sinθ ,0,− cosθ( ).

ω = N cosθ

y = Acos ωt − k x cosθ + z sinθ( )( )[ ],

g

ρ
dρ
dz

= −N 2 ,

ω 2 = gk ρ2 − ρ1( ) / ρ2 + ρ1( )[ ].
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(53)

If the Rossby number is large, the earth’s rotation
can be neglected. Note that the Rossby number is
always large at the equator, where Ω

v = 0.

Hydrodynamic instability

A smooth, laminar flow becomes turbulent as a
result of hydrodynamic instability. Small, random
perturbations are inevitably present in any real sys-
tem; if they die away again, the flow is stable, but if
they grow large, the original flow becomes unrecog-
nisable and is unstable. Usually, steady flows which
are slow or weak enough are stable, but they become
unstable above some critical speed or strength.

The way to investigate instabilities mathemati-
cally is to assume that the disturbances to the steady
state are very small and to linearise the equations
accordingly. Thus, if the steady state velocity, pres-
sure and density are given by u0(x), p0 (x) and ρ0 (x)
(all functions of position, in general) it is postulated
that, with the perturbation, we have

where u′, p′ and ρ′ are small. Then these are sub-
stituted into the governing equations, and terms
involving squares or products of small quantities
are neglected, so the equations are linearised. For
example, equation (7) which, with (3b), is 

becomes

(54)

and the nonlinear term u′∇ρ′ is neglected. After
linearisation, it is usually possible to think of the
disturbance as made up of many modes in which
the variables depend sinusoidally on one or more
space coordinates and exponentially on time, e.g.

(55)

(cf 42), where and we are using complex
number notation. Such terms are substituted into the

equations, and it turns out that a solution of the sup-
posed form exists only if σ takes a particular value.
If that value has negative (or zero) real part, the dis-
turbance dies away (or oscillates at constant ampli-
tude); if it has positive real part it grows exponen-
tially, indicating instability. If any disturbance of the
form (55) (i.e. for any values of k and l) grows, then
the flow is unstable, because in general all distur-
bances are present, infinitesimally, at first.

Consider, for example, the case of two fluids of
different densities, one on top of the other. We have
seen that the frequency of a disturbance of
wavenumber k is given by equation (46) if ρ2(the
density of the lower fluid) is greater than ρ1.
However, if ρ1 > ρ2, ω

2 as given by (46) is negative.
But if we replace ω by iσ, σ2 is positive, σ is real,
and the oscillation cosωt can be written as 1/2(eσt +
e-σt).Thus exponential growth is predicted. Hence
the interface between a dense fluid and a less dense
fluid below it is unstable.

A similar analysis can be performed for a contin-
uous density distribution, denser on top, caused by a
temperature gradient, say, in a fluid heated from
below. In this case the diffusion of heat (and hence
density) must be allowed for, as well as conserva-
tion of fluid mass and momentum. For example, a
horizontal layer of fluid, contained between two
rigid horizontal planes, distance h apart and main-
tained at temperatures T0 (top) and T0 + ∆T (bot-
tom) is unstable if the temperature difference ∆T is
large enough. More precisely, instability occurs if
a dimensionless parameter called the Rayleigh
number Ra exceeds the critical value of 1708,
where 

(56)

Here α, ν and κ are fluid properties, the coefficient
of expansion, the kinematic viscosity (µ/ρ) and the
thermal diffusivity respectively. When instability
occurs, for values of Ra not much greater than 1708,
the resulting motion is a regular array of usually
hexagonal cells (fig. 13), with fluid flow up in the
centre of the cells and down at the edges. Such a
motion is an example of thermal convection, called
Rayleigh-Benard convection. When Ra is much
higher than 1708, the cells themselves become
unstable, the convection becomes very complicated
and eventually turbulent.

Rayleigh-Benard convection is an example in
which instability of the original steady state leads
to another, regular, steady motion which itself goes

Ra =
gα∆Th3

νκ

i = −1

ρ' = f z( )exp i kx + ly( ) + σt{ }

∂ρ′
∂t

+ u0.∇ρ′+u′.∇ρ0 = 0

∂ρ
∂t

+ u.∇ρ = 0,

u = u0 x( ) + u' x,  t( ),
p = p0 x( ) + p' x,  t( ),
ρ = ρ0 x( ) + ρ' x,  t( )

U 2

Ωv L
<< 1.
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unstable as Ra is increased, and turbulence results
only after a whole sequence of such instabilities, or
bifurcations. Other systems do not seem to have
intermediate stable steady states, but there is a
rapid transition from laminar to turbulent flow
when critical conditions are passed. Perhaps the
most familiar and important of such flows are uni-
directional (or approximately so) shear flows, such
as that depicted in fig. 4. Examples are flow in a
straight pipe and flow in the boundary layer on a
rigid body or in the shear layer at the edge of the
recirculation behind it. Flow in a circular pipe of
diameter D normally becomes turbulent when the
Reynolds number

where u– is the cross-sectionally averaged velocity,
exceeds a critical value of just over 2000. Flow in a
boundary layer on a thin flat plate (an approximation
to a streamlined body) becomes unstable when the
Reynolds number based on the free stream velocity
and the boundary layer thickness δs (eq. 36) exceeds
about 244. Flow in a shear layer is more unstable
still, associated with the fact that the velocity profile
contains an inflection point.

When numbers are put in to formulae such as
those quoted above, it becomes clear that oceanic
flows are necessarily turbulent. Hence the existence
of this course.
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FIG. 13. – Photograph of convection pattern for Rayleigh-Benard con-
vection in a layer of fluid heated from below. (Koschmieder, 1974).
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