Inter-annual and inter-specific differences in the drift of fish eggs and yolksac larvae in the North Sea: A biophysical modeling approach
Myron A. Peck, Wilfried Kühn, Hans-Harald Hinrichsen and Thomas Pohlmann

We employed 3-D biophysical modeling and dispersion kernel analysis to explore inter-annual and inter-specific differences in the drift trajectories of eggs and yolksac larvae of plaice (Pleuronectes platessa), Atlantic cod (Gadus morhua), sprat (Sprattus sprattus) and horse mackerel (Trachurus trachurus) in the North Sea. In this region, these four species exhibit peak spawning during the boreal winter, late winter/early spring, late spring/early summer, and mid-summer respectively, but utilize the same spawning locations (our simulations included Dogger Bank, Southern Bight and the German Bight). Inter-annual differences in the temperature history, and an increase in the area of dispersion and final distribution at the end of the yolksac phase were more pronounced (and related to the North Atlantic Oscillation) for winter- and early spring-spawners compared to late spring/summer spawners. The progeny of the latter experienced the largest (up to 10-fold) inter-annual differences in drift distances, although absolute drift distances were modest (~2 to 30 km) when compared to those of the former (~ 20 to 130 km). Our results highlight the complex interplay that exists between the specific life history strategies of the different species and the impacts of the variability in (climate-driven) physical factors during the earliest life stages of marine fish.

Keywords: IBMs, marine fish, life history strategy, drift, temperature, water currents
Contents of this volume Sci. Mar. 73S1 : 23-36 Back PDF
Please, send comments to
ICM (CSIC) - Passeig Marítim de la Barceloneta, 37-49. E-08003 Barcelona (Spain)